23 research outputs found

    Non-equilibrium structural phase transitions of the vortex lattice in MgB2

    Full text link
    We have studied non-equilibrium phase transitions in the vortex lattice in superconducting MgB2, where metastable states are observed in connection with an intrinsically continuous rotation transition. Using small-angle neutron scattering and a stop-motion technique, we investigated the manner in which the metastable vortex lattice returns to the equilibrium state under the influence of an ac magnetic field. This shows a qualitative difference between the supercooled case which undergoes a discontinuous transition, and the superheated case where the transition to the equilibrium state is continuous. In both cases the transition may be described by an an activated process, with an activation barrier that increases as the metastable state is suppressed, as previously reported for the supercooled vortex lattice [E. R. Louden et al., Phys. Rev. B 99, 060502(R) (2019)]. Separate preparations of superheated metastable vortex lattices with different domain populations showed an identical transition towards the equilibrium state. This provides further evidence that the vortex lattice metastability, and the kinetics associated with the transition to the equilibrium state, is governed by nucleation and growth of domains and the associated domain boundaries.Comment: 27 pages, 10 figures. arXiv admin note: text overlap with arXiv:1812.0597

    Structural Transition Kinetics and Activated Behavior in the Superconducting Vortex Lattice

    Full text link
    Using small-angle neutron scattering, we investigated the behavior of a metastable vortex lattice state in MgB2 as it is driven towards equilibrium by an AC magnetic field. This shows an activated behavior, where the AC field amplitude and cycle count are equivalent to, respectively, an effective "temperature" and "time". The activation barrier increases as the metastable state is suppressed, corresponding to an aging of the vortex lattice. Furthermore, we find a cross-over from a partial to a complete suppression of metastable domains depending on the AC field amplitude, which may empirically be described by a single free parameter. This represents a novel kind of collective vortex behavior, most likely governed by the nucleation and growth of equilibrium vortex lattice domains.Comment: 5 pages plus 3 pages of supplemental materia

    Field Dependence of the Superconducting Basal Plane Anisotropy of TmNi2B2C

    Get PDF
    The superconductor TmNi2B2C possesses a significant four-fold basal plane anisotropy, leading to a square Vortex Lattice (VL) at intermediate fields. However, unlike other members of the borocarbide superconductors, the anisotropy in TmNi2B2C appears to decrease with increasing field, evident by a reentrance of the square VL phase. We have used Small Angle Neutron Scattering measurements of the VL to study the field dependence of the anisotropy. Our results provide a direct, quantitative measurement of the decreasing anisotropy. We attribute this reduction of the basal plane anisotropy to the strong Pauli paramagnetic effects observed in TmNi2B2C and the resulting expansion of vortex cores near Hc2.Comment: 8 pages, 6 figures, 1 tabl

    Structural studies of metastable and equilibrium vortex lattice domains in MgB2

    Get PDF
    The vortex lattice in MgB2 is characterized by the presence of long-lived metastable states, which arise from cooling or heating across the equilibrium phase boundaries. A return to the equilibrium configuration can be achieved by inducing vortex motion. Here we report on small-angle neutron scattering studies of MgB2, focusing on the structural properties of the vortex lattice as it is gradually driven from metastable to equilibrium states by an AC magnetic field. Measurements were performed using initial metastable states obtained either by cooling or heating across the equilibrium phase transition. In all cases, the longitudinal correlation length remains constant and comparable to the sample thickness. Correspondingly, the vortex lattice may be considered as a system of straight rods, where the formation and growth of equilibrium state domains only occurs in the two-dimensional plane perpendicular to the applied field direction. Spatially resolved raster scans of the sample were performed with apertures as small as 80 microns, corresponding to only 1.2*10^6 vortices for an applied field of 0.5 T. These revealed spatial variations in the metastable and equilibrium vortex lattice populations, but individual domains were not directly resolved. A statistical analysis of the data indicates an upper limit on the average domain size of approximately 50 microns.Comment: 13 pages, 9 figure
    corecore